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Abstract

In order to reduce the extensive processing of the centralized processor, distributed

adaptive techniques are used that provide a cooperative solution for high definition

adaptive algorithms. The distributed adaptive filtering techniques can be used in

those applications, that utilize processing incapable platforms, such as military

surveillance, industry, transportation instrumentation, environmental parameters

estimation and agriculture development. In this thesis, a Low Communication Par-

allel Distributed Adaptive Signal Processing (LC-PDASP) architecture for a group

of computationally-incapable and inexpensive small platforms is introduced. The

proposed architecture is capable of running computationally-expensive procedures

like complex adaptive algorithms parallely with minimally low communication

overhead. The RLS algorithm with the application of MIMO channel estimation

is deployed on the proposed architecture. complexity and communication burden

of the proposed LC-PDASP architecture are compared with the complexity and

communication burden of conventional PDASP architecture. The comparative

analysis shows that the proposed LC-PDASP architecture provides low compu-

tational complexity and exhibits minimally reduced communication burden per

iteration with an improvement of 85% as compared to the conventional PDASP

architecture.
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Chapter 1

Introduction

In the domain of science and technology, role of adaptive filtering techniques is vi-

tal. These techniques have grabbed researchers’ attention in the past few decades.

As for as the implementations of these filter on low cost energy-constrained wire-

less sensor nodes is concerned, they are usually assumed to be incapable of running

these adaptive filtering techniques because of high memory requirement and fast

processing. However, recently some techniques were proposed by the researchers

to run these highly complex algorithms on low cost platforms through operating

multiple nodes cooperatively [1]. Nevertheless, these parallel operations need sig-

nificant overheads which make them difficult to implement. This chapter presents

the introduction about the wireless sensore nodes (WSNs) and their effective uti-

lization towards the distributed adaptive signal processing techniques

1.1 Low Cost Processing Inefficient Platforms:

Wireless Sensor Nodes

1.1.1 History of Wireless Sensor Networks

The research in (WSNs) may have began in 1980s, from the experiments conducted

by a research group in the United States (US) for military purpose. Furthermore,

1
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Figure 1: Wireless Sensor Network 

In WSN, some of the nodes are extensively utilized due to data flow through these nodes and 

may die out because of power deficiency. Some of such sensor nodes may fail or block without 

interrupting the overall sensor network. 

Architecture of Wireless Sensor Node 

Wireless sensor node is a tiny device and consists of the following components, processing unit, 

communication unit, sensor unit and power unit. 

 

 

Figure 2: Block Diagram of Sensor Node 

 

Figure 1.1: A typical Wireless Sensor Network

in the late 90s, a new upsurge was examined in the field wireless sensor net-

work which made possible to manufacture miniature nodes. In the present era

of globalization, internet of things (IoT), a modified form of WSNs is the utmost

requirement in our daily life and may be used in different applications like moni-

toring of crops in fields, recording of physical environmental conditions, watching

mechanical stress in bridges and beams after earthquake, surveillance of critical

patients, etc [2].

Nevertheless, the present advancement in technology and popularity of these tiny

nodes not only push the WSNs to apply on broader scale in various fields but also

draw the attention of researchers to bring further enhancement in various subfields

of WSNs. Wireless sensor nodes are the indispensable mechanism modules of the

wireless sensor networks. WSNs consists of tiny, low power, low cost and auto-

configure nodes that collaboratively exchange information with a central node,

i.e. sink [3]. WSNs composed of large number of nodes according to the desired

application as shown in FIGURE 1.1. Wireless sensor nodes are playing vital role

in field of wireless communication system. A WSN consists of small, low power,

low cost and auto-configure nodes that collaboratively exchange information with

a master node.
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Figure 1.2: Block Diagram Of a Sensor Node

1.1.2 Architecture of a Wireless Sensor Node

A typical wireless sensor network consists of processing unit, communication unit,

sensor unit and power unit [4]. The block diagram of sensor node is shown in

FIGURE. 1.2. A brief overview about each unit is as follows:

1.1.2.1 Processing Unit

In wireless senor node, the role of processing unit is foremost as it processes the

data which is dependent upon the type of processor. The performance of any

wireless sensor node is measured by its processor speed. Processing unit consist of

different types of processors according to the nature of work. The most excessively

used processors are DSPs, ATMEGA-128, ASICS, FPGA and ATMEGA-16.

1.1.2.2 Power Unit

Power unit is considered as a key component in a wireless senor node which supplies

energy to other units of the node. The cost of any wireless sensor node is measured

by its total energy consumption. During exchange of data within the network,

some nodes may die out due to inadequate power backup which may decrease

the proficiency of the wireless sensor nodes. There are different energy sources

used to support power unit. Power unit is supported by solar cell, batteries and
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capacitors. However, for continuous supply of energy is necessary which can be

cultivated through solar cells, etc [5].

1.1.2.3 Sensor Unit

Sensor unit consists of different sensors as per desired application. It includes

vibration sensor, light sensor and temperature sensor, etc. Sensors are used to

measure external parameters of the environment. Various sensors take analog

signals as input from the external environment and converted them to digital

signals before sending to the processing unit.

1.1.2.4 Communication Unit

The key component of the transceiver is antenna which is used to transmit and

received small packets of data in form of signals. The transceiver of a typical node

is usually operate on 2.4GH industrial scientific and medical (ISM) band [6].

1.1.3 Internet of Things (IoT)

IoT has become the topic of great interest these days. This is an idea to enhance

the life quality by interconnecting small devices, smart technologies and applica-

tions together. IoT also establishes the connection among edge devices to different

servers via internet which provides a role of distributed processing unit in the IoT

platform. Moreover, the performance of IoT platform depends on its components

which include sensing, communication, identification, computational, cloud and

lastly are the services and applications. Whereas, the sensing component is re-

sponsible for the sensing physical or environmental conditions like temperature

and pressure, etc. Communication and identification components represent the

communication technologies and unique ID of each IoT object, respectively. Like-

wise, computational and service components are responsible for processing of data

and represent all kind services provided by the IoT platform, respectively [7]. All
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these components work together to get reliable and distributed data from IoT

platform.

1.1.4 Graphical Processing Unit (GPU)

Graphical Processing Unit (GPU) is an electronic chip that can perform rapid

mathematical operations and process data with very high speed due to its parallel

architecture. Processing speed of GPU is greater than Central Processing Unit

(CPU) this is because of its ability to perform different tasks at the same time

and this quality makes the GPU palmary. GPU is one of the most promising

platform for parallel applications. However, the Clock speed of GPU is low as

compared to CPU. Moreover, the GPU is a power hungry device which utilizes

more power as compared to the bunch of wireless sensor nodes.. Calculations done

by GPU are applied in many fields such as, sound processing, physical simulation,

adaptive radiation therapy, computer vision, data mining and bioinformatics etc

[8].

1.1.5 Tensor Processing Unit (TPU)

In 2011, google Professionals realized they had serious problem about deep learning

network with increased computational demand. CPUs were introduced to handle

this problem but, CPUs were not able to handle large number of computational

tasks at a time, this was major limitation of CPUs. On the other hand GPUs can

carry out wide range of tasks at the same time. GPUs are best for deep learning

applications because deep learning network performs millions of computations at

a same time. But google requirements were still high they need more efficient pro-

cessing chip so they decided to build their own processing chip. Google developed

an Al accelerator integrated circuit which is used by the help of its tensor flow

Al frame work and this chip has given the name of tensor processing unit (TPU).

Tensor flow, is google open source software library for its internal use. Tensor

flow name is derived from the operation of neural network that it performs on
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multidimensional data arrays, these arrays are called tensors. Tensor processing

units are specially designed for machine learning they may not use for other work

load, thereby limiting the flexibility they have to shift work around.

1.1.6 Distributed Wireless Sensor Nodes

The demand of improving processing efficiencies is increasing every day. Central

Processing unit (CPU), communication hardware and power unit are the key com-

ponents that are used to measure the performance of wireless sensor node. The

main challenge in the development of wireless sensor node is low processing ca-

pability and better quality of service due to limit power resources. So, powerful

combination of distributive wireless sensor nodes is used for complex processing.

Overall cost is justified by the cost of the single node. Zigbee and android BT are

excessively used low cost wireless sensor nodes for communication [9, 10].

1.2 Adaptive Filtering

Filter is just like a black box which processes the input signal and generates a

modified output signal. In linear filter, output is always linear function of its input

signal, whereas, output behavior of nonlinear filter is comparatively different from

linear filter. Hence, complex mathematics is involved to retain the output form of

nonlinear signal [11].

1.2.1 Linear Adaptive Filter

A filter detects a desired signal adaptively which is coming from the unknown chan-

nel environment is known as adaptive filter. Adaptive filter continuously track the

changes which are happen in the channel and updating its filter coefficients values

accordingly [12]. The filter weight adjustment is a primary task of any adaptive

filter. Adaptive filter always tries to reduce the difference between the input and
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the output signal and refine its transfer function. Adaptive filters are used in many

applications, e.g. channel state information (CSI), channel equalization, adaptive

noise cancelation, and adaptive beam forming. Furthermore, Finite Impulse Re-

sponse (FIR) and Infinite Impulse Response (IIR) are the two main categories

which are used to model the adaptive filter. However, FIR filter has a preference

over IIR due to its casuality and lesser computational complexity requirements

[11].

1.2.2 Mean Squared Error (MSE) Criterion

A mean squared error (MSE) criterion plays a vital role for the analysis of any

adaptive filtering algorithm. MSE is simply refers to the mean squared difference

between the desired signal and the estimated signal [13]. FIR filter strictly follows

the MSE criterion. The error signal en which is the difference of desired signal

dn and measured signal yn is an important parameter used to update the filter

coefficients can be written as

en = dn − yn (1.1)

The MSE criterion according to error function can be expressed as

MSE = E[|en|2] (1.2)

Here, E represents the expectation operator. The MES criterion has a great im-

portance while designing of any adaptive filtering algorithm.

1.2.3 Gradient Based Approach

The gradient based methods have received intensive interest in research and scien-

tific applications [14]. The most important and well used gradient based algorithms

are least mean square (LMS), normalized LMS (NLMS) and variable step-size LMS

(VSLMS). A brief description about each gradient based approach is as follow.
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1.2.3.1 Least Mean Square (LMS) Algorithm

A well known LMS adaptive algorithm is most widely used in the world. The

convergence performance of LMS algorithm is dependent on the step size param-

eter and its selection is one of the promising task [15]. The update filter weight

equation of LMS algorithm can be expressed as

wn = wn−1 + µenyn (1.3)

where µ is the step size parameter, w represents the filter weights and yn is the

measure output signal[16].

1.2.3.2 Normalized LMS (NLMS) Algorithm

In NLMS adaptive algorithm, a normalize step size parameter is used to update

the filter coefficients. The normalize step size parameter depends upon the signal

variations. However, for highly time varying channel conditions, the NLMS algo-

rithm rules out its convergence performance which is a major drawback of this

algorithm [17, 18]. In NLMS step size parameter is adjusted according to input

signal power variation.

1.2.3.3 Variable Step-Size (VSSLMS) Algorithm

VSSLMS algorithm utilizes two step size parameters which is suitable for slow

and time varying channel environments. For highly time varying channel condi-

tions, the larger step size parameter is used and vice versa. The stability and

convergence performance of the VSSLMS algorithm is dependent upon the proper

setting of step size parameters; however, their setting are considered to be one

of the challenging task [19]. So in fast time varying channel conditions VSSLMS

may lost stability and computational cost of VSSLMS also increase just like LMS

algorithm.
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1.3 Least Square Based Approach

The least square based approach recursively finds the optimum filter coefficients

and it minimizes the weighted cost function. This method is able to track the

fast variations which are happen into the signal process. The least square based

approach has relatively fast tracking performance as compared to gradient based

approach. However, the price of these benefits is on behalf of complex computa-

tional complexity of the recursive based algorithms [20].

1.3.1 Recursive Least Square (RLS) Algorithm

Recursive Least Square (RLS) is the most popular adaptive filtering algorithm.

The RLS algorithm is suitable for non-stationary channel environments. The

RLS algorithm provides fast rate of convergence performance according to the

time variations in the process. The RLS algorithm utilizes forgetting factor λ to

reduce the influence of past samples to error covariance matrix and it makes the

filter more sensitive to the present and recent samples. This algorithm is very

suitable in many applications, such as channel equalization, speech enhancement,

channel estimation, radar signal processing and echo cancelation. However, due to

complex computational cost, RLS algorithm is considered to be ruled out for real

time implementation on computationally-incapable wireless sensor nodes [21].

1.4 MIMO System and MIMO Channel

Estimation

In MIMO communication system, multiple antennas are used at both the trans-

mitter and receive side to improve the link capacity or spectral efficiency. MIMO

system has become a key element of many communication standards, such as IEEE

802.22ac (Wi-Fi), IEEE 802.11n (Wi-Fi), WiMAX (4G), HSPA+ (3G) and Long
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Term Evolution (LTE 4G). The capacity in MIMO communication system is pro-

portional to the number of antenna elements which are used in the communication

link. MIMO systems are also used to increase the data throughput without an

increase in operational bandwidth. However, this increased data throughput is

based on the getting of true information of non-coherent Rayleigh fading channel.

The non-coherency of the MIMO channel is due to the Inter-Symbol Interference

(ISI) [22] that may be either parallel or based on mutipath components which is

discussed in Chapter 3. Therefore, adaptive filters are only the choice which are

used to estimate the non-coherent statistics of the MIMO channel. Moreover, the

computational complexity of the adaptive algorithm is directly dependent on the

parallel interference as well as on multipath components that provides a critical

impact on the overall execution time of the adaptive algorithm [23–25].

1.5 Parallel Distributed Adaptive Filtering

Architectures

Incremental strategy and Parallel Distributed Adaptive Signal Processing (PDASP)

are the two architectures which are used to run the high definition adaptive filter-

ing algorithm in parallel fashion. A brief overview about each architecture is as

follows:

1.5.1 Incremental Strategy

In incremental strategy, all the network nodes use the cyclic pattern to find the es-

timate of the unknown coefficients with minimum power requirements. The model

diagram of incremental strategy is shown in FIGURE. 1.3. Furthermore, in the

incremental network, each individual node performs local computations and then

share the updated information towards the adjacent node [26]. The number of N

nodes in the incremental network is dependent upon the M iterations which make

possible of the convergence of the adaptive algorithm. As compared to centralized
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solution, the incremental approach reduces the power requirements and improves

the autonomy of the network. However, in case of MIMO channel estimation sce-

nario, the incremental based network technique facing high communication burden

in sense of transferring of complex MIMO channel matrices among the nodes of the

network. Moreover, each node in the incremental network is being free for M − 1

iterations, where M is the total number of iterations required for the complete

convergence of the adaptive filtering algorithm [27–29].

Node 1 

Node 2 

Node 3 

Node 4 

Node N 

Node 1 Node 2 

Node 4 

Node 3 

Figure 1.3: Model diagram of incremental strategy

1.5.2 Parallel Distributed Adaptive Signal Processing

(PDASP) Architecture

Parallel Distributed Adaptive Signal Processing (PDASP) architecture utilizes

only four nodes for the execution of the adaptive filtering algorithm. PDASP

architecture is able to run RLS algorithm in parallel fashion. The flow dia-

gram of PDASP architecture is shown in FIGURE. 1.4. The PDASP scheme

exhibits much lesser computational complexity and processing time parallely than

the sequentially-operated algorithms and it also provides improvement in mean

squared error as compared to sequential operated RLS algorithm, however; the
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Node 1 
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Figure 1.4: Model diagram of PDASP architecture

communication burden among the participating nodes is very high which makes a

very crucial impact on the execution time of the algorithm [30].

1.6 Research Objectives

The research objectives of this thesis are as follows:

• The first objective of this research is to develop a distributive low complexity

solution of high definition adaptive filtering algorithm, e.g. RLS algorithm.

• The second objective of this research is that the proposed distributive archi-

tecture exhibits minimally reduced communication burden as compared to

the existing solutions

• The third objective of this research is that all the nodes use the collaborative

strategy though requires limited interaction with the other nodes in the

distributed network.
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1.7 Thesis Composition

In Chapter 2, the literature survey is presented. In Chapter 3, the system model

and existing solutions are described. The proposed low communication PDASP

(LC-PDASP) architecture is presented in Chapter 4 and Chapter 5 draws the

conclusions and future work.



Chapter 2

Literature Review

This chapter presents literature survey of WSNs, adaptive and non adaptive filter-

ing techniques with pros and cons. This chapter also describes problem statement,

research methodology and thesis contribution.

2.1 Literature Survey

A typical wireless sensor node generally consists on micro controller, sensor unit,

wireless transceiver and power unit. The power constraints and limited memory

restrict the low-cost sensor node to run the complex adaptive filtering algorithm.

In the existing adaptive filtering strategies, fast convergence and computational

complexity are the main parameters in which more research is needed to improve

the convergence and complexity requirements of the high definition algorithms so

that they can efficiently run on a single unit [31, 32]. Several techniques have

been introduced in the literature that may apply on the high definition adaptive

filtering algorithms to reduce their computational cost [23, 24, 33, 34]. In [35, 36],

Banachiewics inversion formulation is introduced. In this technique, the 4 × 4

matrix is divided into four 2×2 matrix which makes the reduction in computation

operations. Likewise, in [37], Hermitian positive definite inversion method is intro-

duced which requires only 52 operations for the solving of 4× 4 matrix inversion.

14
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Nevertheless, both the matrix inversion techniques do not provide a significant role

in the reduction of computational complexity if we apply them on the high defini-

tion adaptive filtering algorithm like RLS. Furthermore, in [38], subband adaptive

filtering (SAF) for multirate filter banks is introduced. The SAF technique utilizes

reduced computational complexity through by using LMS algorithms. However,

due to extra processing delays these system are not able to be implemented in real

life applications. In [39], a distributed adaptive node-specific signal estimation

(DANSE) is introduced. The DANSE techniques uses the wireless sensor nodes to

estimate the channel coefficients by using the adaptive Wiener Hopf formulation.

The major drawback of DANSE techniques is that it only follows the adaptive

Wiener Hopf equation rather than by using gradient or recursive based adaptive

filtering algorithms.

Furthermore, one of the particular objectives is that the distributive adaptive solu-

tion has a potential to run the complex adaptive filtering algorithm distributively.

Moreover, the low cost individual nodes in the distributed adaptive network have

the ability to share the bandwidth, computational complexity and power usage

and reduced the over all aggregate complexity as compared to the centralized so-

lution [31, 32, 34]. In [10, 40, 41], the consensus based distributed solution is

presented. The consensus technique requires two time scales while working on the

estimation problem. During the initial time period, each node in the distributed

network produces the individual estimate; however, in consensus stage, each node

combines the overall estimates of all the nodes in the network and reaching to-

wards the desire estimate. The consensus technique relies on network topology

and particular conditions which make ruled out of its implementation in real time

environment. In [42] anther type of algorithms were introduced which based on

duffision based strategies,these strategies are basically used for distributed esti-

mation and adaptive filtering problems. The main idea behind the diffusion based

strategies was to introduce distributed estimation based scheme. Furthermore,

the incremental distributed technique is introduced in [26, 27]. In incremental

strategy, all the network nodes use the cyclic pattern to find the estimate of the
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Figure 2.1: LC-DRLS Incremental Technique

unknown coefficients with minimum power requirements. Furthermore, in the in-

cremental network, each individual node performs local computations and then

share the updated information towards the adjacent node. The number of nodes

in the incremental network is dependent upon the total iterations which are used

to make possible of the convergence of the adaptive algorithm. As compared to

centralized solution, the incremental approach reduces the power requirements and

improves the autonomy of the network. However, in [43] case of MIMO channel

estimation scenario, the consensus and incremental based network techniques fac-

ing high communication burden in sense of transferring of complex MIMO channel

matrices among the nodes of the network. Likewise, in [29] low communication

distributed recursive least square (LC-DRLS) technique is introduced. In this tech-

nique, the communication burden is reduced by initializing the error covariance

matrix at each node, which is shown in FIGURE. 2.1. However, all the distributed

nodes still entail the complex computational complexity of the adaptive algorithm

and each node in the network is being free for K − 1 iterations, where K is the

total number of iterations required for the complete convergence of the adaptive

filtering algorithm.

Furthermore, in (PDASP) [30], a novel processing-efficient PDASP architecture
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of a group of inexpensive and computationally-incapable small platforms is pro-

posed for a parallely-distributed adaptive signal processing (PDASP) operation.

The PDASP scheme exhibits much lesser computational complexity parallely than

the sequentially-operated algorithms. PDASP architecture has ability to run RLS

algorithm parallely, the wireless sensor nodes used in PDASP architecture have

less multiplication and additional complexity. PDASP architecture consist of four

nodes one is called master and other three are called slave, master node is defined

on basis of its higher computational complexity however; the communication bur-

den among the participating nodes is very high which makes a very crucial impact

on the execution time of the algorithm.

2.2 Research Motivation and Problem Statement

As it is discussed earlier, the PDASP architecture requires only four nodes to run

the high definition RLS algorithm parallely. Moreover, the PDASP architecture

provides reduced computational complexity and processing time parallely as com-

pared to sequential RLS and distributed LC-RLS adaptive algorithms. However,

the communication burden provided by the PDASP architecture is very high which

makes a very crucial impact on the overall execution time of the algorithm which

restricts the PDASP architecture to run in time varying channel environments.

To overcome such type of uncertainties, there must be the distributed architecture

which provides low computational complexity and processing time parallely solu-

tion with minimally low communication overheads and provides fast convergence

as compared to the PDASP architecture.

2.3 Research Methodology

In this thesis low-communication parallel distributed adaptive signal processing

(LC-PDASP) architecture for a group of computationally-incapable small plat-

forms is introduced. In the proposed architecture each node uses collaborative
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strategy though required limited interaction with the other nodes; therefore pro-

posed architecture utilize only two nodes for complete communication setup which

provides the best utilization of low cost devices than the LC-RLS scheme [44].

Furthermore the proposed LC-PDASP scheme exhibits reduced multiplication

complexity and communication burden than conventional PDASP architecture.

Moreover the proposed architecture provides an improvement in mean square er-

ror (MSE) than PDASP architecture. The convergence performance of proposed

scheme tends to be almost same as that of sequentially-operated RLS algorithm.

2.4 Thesis Contributions

Net-shell research contributions of this thesis are given below.

• Processing- efficient Low-communication parallel distributed adaptive signal

processing (LC-PDASP) architecture is a group of small, inexpensive and

incapable platform is introduced.

• LC-PDASP presented reduced multiplication and communication burden as

compared to the recently proposed PDASP.

• Mean Square error is improved in as compared to conventional PDASP while

keeping performance same



Chapter 3

System Model and Working of

PDASP

3.1 System Model

The block diagram of MIMO communication system with N transmitting and re-

ceiving antennas is shown in FIGURE 3.1. In typical MIMO communication sys-

tem, the input signal is divided into N subblocks which are transmitted separately

through the use of multiple antennas. At the receiver end, all the transmitted sub-

block signals are distorted by the parallel intersymbol interference (ISI) [22], as

shown in FIGURE 3.2. Therefore, the received signal yn can be expressed as

yn = HH
n xn + ϑn (3.1)

where

Hn =


h11,n h12,n · · · h1N,n

h21,n h22,n · · · h2N,n

...
...

. . .
...

hN1,n hN2,n · · · hNN,n



19
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Figure 3.1: MIMO System Model
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Figure 3.2: 2× 2 MIMO Communication System

H̃n =


h11(0),n · · · h11(L),n h21(0),n · · · hN1(L),n

h12(0),n · · · h12(L),n h22(0),n · · · hN2(L),n
...

...
...

. . .
...

h1N(0),n · · · h1N(L),n h2N(0),n · · · hNN(L),n



is N × N channel matrix, xn = [x1,n x2,n · · · xN,n]T is the transmitted signal

vector, ϑn = [ϑ1,n ϑ2,n · · · ϑN,n]T is the White Gaussion Noise with variance σ2
ϑ

and subscript n shows the discrete time index. In case of multipath components

that exist on the way between transmitter and receiver, make a critical impact on

the size of the matrix; therefore, the channel matrix H̃n becomes an N ×N(L+1)

matrix, where L shows the total number of multipath components. The dimensions

of H̃n are not only dependent on the number of transmit and receive antennas but

also dependent on the number of multi-path components that exist between the

transmit and receive antennas, as shown in FIGURE 3.3.
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Figure 3.3: Frequency Selective Channel Model for 2× 2 MIMO Communica-
tion System

Each entry of the channel matrix H̃n is now h
(trl)
n , where t = 1, 2, · · · , N , r =

1, 2, · · · , N and l = 0, 1, · · · , L− 1. Likewise, xn also changes to

x̃n = [x1,n · · · x1,n−(L) x2,n · · · x2,n−(L) · · · xN,n−(L)]
T which is a concatenated

transmitted signal vector with elements, x(i),n, where i shows the index of the

transmit antenna element and n shows the time epoch. Time epochs other than

current provide ISI in the model.

3.2 Working Procedure of PDASP Architecture

This section describes the parallel working procedure of sequential RLS algorithm

with different time indexes. The important timing variables involved in parallel

operation of RLS algorithm are defined as;

• Computational Time (Tc): The total time taken by processor for single

iteration.

• Block Processing Time (Tb): Processing time taken by any specific block

of algorithm.

• Fetch Time (Tf): Time required to fetch the information one block to

another.

• Algorithm Step time (Ts): Total time required for one complete iteration

of algorithm.
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Sequential working of blocks is shown in FIGURE 3.5. Whereas, the working

procedure of single block is shown in FIGURE 3.4.

Figure 3.4: A Block Processes

In sequentially operated RLS algorithm, all filter subparts are interdependent on

each other and algorithm takes mutual processing time for convergence. Whereas,

in PDASP architecture, RLS algorithm runs parallely at different time indexes

with low processing time compared to sequential operated RLS algorithm. PDASP

architecture also provides reduction in computational complexity and communi-

cation burden. Before setting the nonaligned time indexes, two things must be

considered. First filter behavior should not be uncertain and second filter subparts

should be able to work in parallel fashion with acceptable fetch time with respect

to block processing time. Parallel operated RLS filtering architecture has four

nodes namely; M1, M2, M3 and M4 as shown in FIGURE 3.6. M1 and M4 are

connected with M2 and M3, respectively, and also linked with themselves. M2

is linked with M1 and M4 whereas M3 is only connected to M4. Before starting

work on desired goal all processing nodes exchange information with each other.

And node with smaller processing time waits until the processing of the other

nodes complete. In this way, computationally incapable and low cost platforms

work in parallel fashion for desired goal [30]. This is communication procedure

of PDASP architecture without considering diffused components, by considering

diffused components communication burden among the nodes also increase.
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Figure 3.5: Sequential Working of Blocks

Figure 3.6: Parallel Operated RLS Filtering

3.3 Channel Estimation using PDASP

Architecture

In the conventional Parallel Distributed Adaptive Signal Processing (PDASP) ar-

chitecture, as shown in FIGURE 3.7, the RLS algorithm runs in parallel fashion
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Figure 3.7: PDASP architecture for MIMO RLS algorithm with non-aligned
time indexes

even with non-aligned time indexes while utilizing low processing time at each

processing node. The PDASP architecture provides an average improvement of

94.97% in sense of decreased processing time then the sequential RLS algorithm.

However, this improvement in decreased processing time is on behalf of high com-

munication burden which makes a crucial impact on the overall execution time of

the adaptive filtering algorithm.

Table 3.1: Maximum Communication Burden Specified for one Complete It-
eration using LoS and Diffused Components

LoS/Diffused
Components

2× 2
MIMO

3× 3
MIMO

4 × 4
MIMO

LoS
Component 10 18 24

One Diffused
Component 28 54 88

Two Diffused
Components 54 108 180
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3.4 Load Balancing Procedure of PDASP

This section elaborates the information interchanging procedure in PDASP archi-

tecture. PDASP architecture consists of four nodes namely; M1, M2, M3 and M4

which are shown in figure. 3.8. Among these four wireless sensor nodes M2 is set

to be a master node. This selection has been done on the basis of maximum com-

putational complexity. So M2 behaves as master node and M1, M3 and M4 acts

as slave nodes. Before running the actual procedure M2 sends beacon message to

all slave nodes to make them ready. The next communication procedure does not

start until or unless the process of master node is completed.

The communication burden provided by the PDASP architecture varies for both

the LoS and diffused components. In case of LoS communication, the dimensions

of the channel matrix Hn and error covariance matrix Pn are the same which

implies the PDASP architecture follows the totally balancing communication pro-

cedure. In this procedure, first of all the update information of Kalman gain gk is

transmitted from node M2 towards M1 and M4 then the nodes M1 and M4 would

capable to send the updated information of error covariance matrix Pn and Hn or

weight vector towards M2 and M3, respectively. Likewise, the nodes M2 and M3

send the information of same order towards M1 and M4, respectively. However,

in case of diffused components, the dimensions of channel matrix Hn and error

covariance matrix Pn are varies and depend upon the number of transmitting and

receiving antennas as well as on the number of multipath components. In case of

diffused components, the error covariance matrix Pn provides overwhelm trans-

mission delay in the communication link [45]. The per-iteration PDASP based

maximum communication burden of data elements with LoS and diffused com-

ponents is shown in Table 3.1. It can be seen that the communication burden

provided by the PDASP architecture for diffused components provides a critical

impact on the execution time of the algorithm over the distributed adaptive net-

work. By considering multipath components the communication burden of PDASP

architecture increase due to change in dimensions of error covariance matrix Pn

and channel matrix Hn.
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Figure 3.8: Load Balancing Procedure of PDASP Architecture

3.5 Validation of PDASP using NRF24L01 Nodes

and Memory Usage Comparison

In PDASP architecture, four nodes communicating with each other by using

NRF24L01 trans-multiplexer module. The module is based on 2.4 GHz industrial

scientific and medical (ISM) band. NRF24L01 module is low cost and low current

consumption device with maximum data rate of 2 Mbps.

3.5.1 Sequential Implementation

In sequential operated algorithm all subparts run on single unit. The memory

limitation comparison of 2x2, 3x3 and 4x4 MIMO systems by considering zero,

one and two diffused components during the execution of sequential algorithm on

single unit is shown in Table 3.2. It has been observed that number of antennas and

diffused components increase low memory devices like NANO and UNO. NANO

and UNO are unable to run sequential algorithm on single unit whereas, MEGA is

able to run sequential algorithm on single unit 2x2, 3x3 and 4x4 MIMO systems.
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Table 3.2: Memory limitation comparison on different sequential MIMO sys-
tems with LOS and diffused components using sequential implementation

Arduino
platform

Diffused
Components

2x2 MIMO
System

3x3 MIMO
System

4x4 MIMO
System

NANO
Zero Diffused
Components

Is Working Is Working Is Working

UNO
Zero Diffused
Components

Is Working Is Working Is Working

MEGA
Zero Diffused
Components

Is Working Is Working Is Working

NANO
One Diffused
Components

Is Working Memory
Error

Memory
Error

UNO
One Diffused
Components

Is Working Is Working Is Working

MEGA
One Diffused
Components

Is Working Is Working Memory
Error

NANO
Two Diffused
Components

Memory
Error

Memory
Error

Memory
Error

UNO
Two Diffused
Components

Is Working Memory
Error

Memory
Error

MEGA
Two Diffused
Components

Is Working Is Working Is Working

3.5.2 Parallel Implementation

The group of the computationally incapable and inexpensive platforms are able to

work in parallel fashion with lesser communication burden. The memory improve-

ments comparison of 2x2, 3x3 and 4x4 by considering zero, one and two diffused

components is shown in Table 3.3. However among these three nodes NANO is

not working on 3x3 and 4x4 MIMO communication system with two diffused com-

ponents. Whereas by considering two multipath components UNO and MEGA

are working on 3x3 and 4x4 MIMO communication system. However for LoS and

one multipath component NANO, UNO and MEGA are working on 3x3 and 4x4
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MIMO communication system.

Table 3.3: Memory improvement for different MIMO systems with LOS and
diffused components using PDASP architecture

Arduino
platform

Diffused
Components

2x2 MIMO
System

3x3 MIMO
System

4x4 MIMO
System

NANO
Zero Diffused
Components

Is Working Is Working Is Working

UNO
Zero Diffused
Components

Is Working Is Working Is Working

MEGA
Zero Diffused
Components

Is Working Is Working Is Working

NANO
One Diffused
Components

Is Working Memory
Error

Is Working

UNO
One Diffused
Components

Is Working Is Working Is Working

MEGA
One Diffused
Components

Is Working Is Working Is Working

NANO
Two Diffused
Components

Is Working Memory
Error

Memory
Error

UNO
Two Diffused
Components

Is Working Memory
Error

Is Working

MEGA
Two Diffused
Components

Is Working Is Working Is Working

3.6 Processing Time Comparison

The processing time of any algorithm is dependent upon the computational com-

plexity of the algorithm as well as on the fetch time of variables while acquir-

ing from the memory. The Processing time comparison between low complexity

MIMO channel estimation algorithm and its implementation on PDASP architec-

ture is shown in Table 3.4. It has been observed that processing time provided by
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PDASP architecture is much lesser as compared to sequential operated low com-

plexity MIMO channel estimation algorithm. In case no of diffused components,

processing time provided by M1 is greater as compared to slave nodes.

Table 3.4: Sequential and distributed Processing Time in Micro sec for differ-
ent MIMO systems.

Processing
Algorithm

Diffused
Component

2x2 MIMO
System

3x3 MIMO
System

4x4 MIMO
System

Sequential
Algorithm One Diffused

Component
1780 3532 6116

M1
One Diffused
Component

524 1008 1612

M2
One Diffused
Component

508 1000 1772

M3
One Diffused
Component

164 332 680

M4
One Diffused
Component

212 508 920

Sequential
Algorithm Two Diffused

Component
3272 6852 11816

M1
Two Diffused
Component

1004 1992 3080

M2
Two Diffused
Component

1020 2268 4544

M3
Two Diffused
Component

248 504 884

M4
Two Diffused
Component

332 772 1232

The processing time of M1 is greater than all the other nodes due to its maximum

computational complexity. However, in some cases of diffused components, the

processing time of M2 is increased than M1. This increased processing time of M2

is due to the increased fetch time of variables while acquiring from the memory
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as compared to the node M1. Furthermore, the sequential and distributed mul-

tiplication and addition complexity comparisons for different MIMO systems are

shown in Table 3.5 and Table 3.6, respectively. It can be seen that among of all

the nodes, M1, entails larger computational complexity which is much lesser than

the sequentially-operated low complexity MIMO algorithm.

Table 3.5: Sequential and distributed multiplication complexity for different
MIMO systems with one and two diffused components.

Processing
Algorithm

Diffused
Component

2x2 MIMO
System

3x3 MIMO
System

4x4 MIMO
System

Sequential
Algorithm One Diffused

Component
57 121 209

M1
One Diffused
Component

25 49 81

M2
One Diffused
Component

16 36 64

M3
One Diffused
Component

8 18 32

M4
One Diffused
Component

8 18 32

Sequential
Algorithm Two Diffused

Component
109 235 409

M1
Two Diffused
Component

149 100 169

M2
Two Diffused
Component

36 81 144

M3
Two Diffused
Component

12 27 48

M4
Two Diffused
Component

12 27 48

The processing time of M1 is greater than all the other nodes due to its maximum

computational complexity. However, in some cases of diffused components, the

processing time of M2 is increased than M1. This increased processing time of M2
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is due to the increased fetch time of variables while acquiring from the memory

as compared to the node M1. Furthermore, the sequential and distributed mul-

tiplication and addition complexity comparisons for different MIMO systems are

shown in Table 3.5 and Table 3.6, respectively. It can be seen that among of all

the nodes, M1, entails larger computational complexity which is much lesser than

the sequentially-operated low complexity MIMO algorithm.

Table 3.6: Sequential and distributed aditional complexity for different MIMO
systems with one and two diffused components.

Processing
Algorithm

Diffused
Component

2x2 MIMO
System

3x3 MIMO
System

4x4 MIMO
System

Sequential
Algorithm One Diffused

Component
48 108 192

M1
One Diffused
Component

16 36 64

M2
One Diffused
Component

16 36 64

M3
One Diffused
Component

8 18 32

M4
One Diffused
Component

8 18 32

Sequential
Algorithm Two Diffused

Component
96 216 384

M1
Two Diffused
Component

36 81 144

M2
Two Diffused
Component

36 81 144

M3
Two Diffused
Component

12 27 48

M4
Two Diffused
Component

12 27 48
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Proposed Low Communication

PDASP (LC-PDASP)

Architecture

In this chapter the proposed LC-PDASP architecture is presented insection 4.1.

Moreover comparative analysis of the proposed architecture and the existing PDASP

architecture in terms of computational complexity, communication burden and

mean squared error is given in section 4.2, 4.3 and 4.4. And it is observed that

proposed LC-PDASP architecture outperforms as compared to existing PDASP

architecture.

4.1 Proposed LC-PDASP Architecture

The flow diagram of the proposed LC-PDASP architecture is shown in FIG-

URE 4.1. In the proposed Low Communication Parallel Distributed Adaptive

Signal Processing (LC-PDASP) through computationally constrained low cost

communication platform is introduced. However, by using the LC-PDASP archi-

tecture, the computational complexity respective to each processing node is much

32
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lesser than that of sequentially operated low complexity MIMO estimation algo-

rithm and PDASP. The proposed LC-PDASP architecture exhibits reduced mul-

tiplication complexity and communication burden than the conventional PDASP

architecture. Moreover proposed LC-PDASP architecture provides an improve-

ment in Mean Square Error (MSE) than PDASP.
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Figure 4.1: Proposed LC-PDASP Architecture for MIMO RLS Algorithm

4.1.1 Reduction Of Computational Complexity

In the proposed LC-PDASP architecture, each node uses the collaborative strategy

though requires limited interaction with the other nodes in the distributed network.

In this context, the individual computational complexity of all the nodes M1 · · ·M4

in PDASP architecture with diffused components is shown in Table 4.1. Likewise,

the combined multiplication and addition complexity of nodes M1,2 and nodes

M3,4 are shown in Table 4.2 and Table 4.3, respectively. It can be seen that

the multiplication and addition complexity of the nodes M1 and M2 is greater or

equal than the both nodes M3 and M4. Therefore, if we combine the computational

complexity of the nodes M3 and M4 that would be less or equal than the individual

complexity of the nodes M1 and M2.
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4.1.2 Reduction Of Communication Burden

Furthermore, the communication burden and the computational complexity im-

plies by the node M1 is greater than all the other nodes in the PDASP architec-

ture. Our proposition is that the node M2 locally initialize the error covariance

matrix Pn every time and make themselves independent form the node M1. In

this way, the node M1 has no need to operate in the distributed network. The

communication burden of proposed LC-PDASP architecture for different MIMO

communication systems is shown in Table 4.4.

Table 4.1: Individual Computational Complexity of all the PDASP Nodes
with Diffused Components (DCs)

Node 1 Node 2 Node 3 Node 4

Multiplication
Complexity 2(N +

NL)2
(N +NL)2 +

2N(L+ 1)
N2(L+ 1) N2(L+ 1)

2× 2 with 1
DC 32 24 8 8

2× 2 with 2
DC 72 48 12 12

3× 3 with 1
DC 72 48 18 18

3× 3 with 2
DC 162 99 27 27

Additional
Complexity (N +NL)2 (N +NL)2 N2(L+ 1) N2(L+ 1)

2× 2 with 1
DC 16 16 8 8

2× 2 with 2
DC 36 36 12 12

3× 3 with 1
DC 36 36 18 18

3× 3 with 2
DC 81 81 27 27

4.1.3 Reduction Of Processing Time

In the proposed LC-PDASP architecture, only two low cost processing nodes are

used for the complete communication setup. Let the processing time taken by
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Table 4.2: Combined Multiplication Complexity of Node 1, 2 and Node 3, 4

Multiplication
Complexity

Node 12 Node 34

2× 2 MIMO with 1
Diffused Component 24 16

2× 2 MIMO with 2
Diffused Components 48 24

3× 3 MIMO with 1
Diffused Component 48 36

3× 3 MIMO with 2
Diffused Components 99 54

Table 4.3: Combined Additional Complexity of Node 1, 2 and Node 3, 4

Additional Complexity Node 12 Node 34

2× 2 MIMO with 1
Diffused Component 16 16

2× 2 MIMO with 1
Diffused Component 36 36

3× 3 MIMO with 1
Diffused Component 36 36

3× 3 MIMO with 2
Diffused Components 81 81

Table 4.4: Communication burden of proposed LC-PDASP architecture for
different MIMO systems

Diffused
Components

2x2 MIMO 3x3 MIMO 4x4 MIMO

One Diffused
Component 4 6 8

Two Diffused
Components 6 9 11

Kalman gain gn and channel matrix Hn be Tg and TH respectively. Due to the

diffused components, the maximum time taken between the two nodes is of node

M12 because Kalman gain gn taken by node M12 . Node M12 takes more multi-

plications than the finding of update channel coefficients matric Hn occupied by

node M34; therefore, the processing time of the node M12 is greater than the node

M34 that can be expressed as;

TH < Tg (4.1)
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Likewise

TH � TmaxPDASP

TH � TseqRLS

(4.2)

where TmaxPDASP is the maximum processing time taken by the conventional

PDASP architecture and TseqRLS is the time taken by the RLS algorithm when it

operates sequentially.

4.2 Complexity Analysis

In this section, the complexity analysis among the sequential RLS, PDASP and

proposed LC-PDASP architecture is presented and It is also observed that the

communication burden is directly dependent on the number of MIMO streams

and number of multipath components. Multiplication complexity. The computa-

tional complexity of the sequential RLS algorithm requires 3(N+NL)2 +2N2(L+

1) + 2N(L + 1) + 2 multiplications and 2(N + NL)2 + 2N2(L + 1) additions per

iteration; where L shows the number of multipath components and N shows the

dimensions of filter order. Furthermore, the conventional PDASP based RLS al-

gorithm entials 2(N+NL)2 multiplications and (N+NL)2 additions per iteration

at maximum. On the other hand, the implementation of LC-PDASP architecture

on RLS algorithm exhibits (N +NL)2 +2N(L+1) multiplications and (N +NL)2

additions per iteration at maximum. The multiplication complexity comparisons

among sequential RLS, PDASP and proposed LC-PDASP for L = 1 and L = 2

diffused components are shown in FIGURE 4.2 and FIGURE 4.3, respectively.

It can be seen that the proposed LC-PDASP architecture provides much lesser

multiplication complexity than the conventional PDASP and sequential RLS al-

gorithms. Whereas additional complexity of PDASP architecture and LC-PDASP

architecture is same but due to increase in multiplication complexity of PDASP

the overall computational complexity of PDASP architecture is greater than LC-

PDASP architecture.
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Figure 4.2: Multiplication Complexity Comparison among Sequential and
Distributed Techniques with One Diffused Component (L = 1)
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Figure 4.3: Multiplication Complexity Comparison among Sequential and
Distributed Techniques with Two Diffused Components (L = 2)

4.3 Communication Burden Analysis

In this section, the communication burden analysis is presented. The communica-

tion burden provided by the proposed LC-PDASP technique is much lesser than

the conventional PDASP architecture. The communication burden comparison for

different MIMO systems with diffused components is shown in Table 4.5. It can
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be seen that the proposed LC-PDASP architecture provides N(L + 1) communi-

cation load; where N shows the MIMO system order and L shows the number of

diffused components. Furthermore, the proposed scheme provides an improvement

of more than of 85% in sense of decreased communication burden which provides

a significant impact on the overall execution time of the algorithm.

Table 4.5: Communication burden Comparison between the proposed LC-
PDASP and conventional PDASP architecture for different MIMO systems

System
Order

Conventional
PDASP

Proposed
LC-

PDASP

% difference

2× 2
MIMO with
1 Diffused

Component

28 4 85.71%

2× 2
MIMO with
2 Diffused
Compo-

nents

54 6 88.88%

3× 3
MIMO with
1 Diffused

Component

54 6 88.88%

3× 3
MIMO with
2 Diffused
Compo-

nents

108 9 91.66%

4× 4
MIMO with
1 Diffused

Component

88 8 90.90%

4× 4
MIMO with
2 Diffused
Compo-

nents

180 12 93.33%
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4.4 Mean Square Performance

To substantiate the validation of proposed LC-PDASP scheme, the Monte Carlo

simulations are performed on 4 × 4 MIMO communications system with binary

phase shift keying (BPSK). The forgetting factor λ is taken to be 0.98. The

proposed LC-PDASP technique is implemented on MIMO RLS is then compared

with conventional PDASP architecture and sequential RLS algorithm in terms of

mean square error (MSE) performance. FIGURE. 4.4 and FIGURE. 4.5 are pre-

senting the MSE performance of proposed LC-PDASP architecture, conventional

PDASP architecture and sequential operated RLS algorithm at low doppler rate

fDT = 10−6 and high doppler rate fDT = 10−3, respectively. It can be seen that

the convergence performance of the proposed LC-PDASP technique tends to be

almost same as that of sequential RLS algorithm whereas; convergence perfor-

mance of LC-PDASP is much lesser than the conventional PDASP. This improved

performance of the proposed technique for both the low and high doppler rates is

due to the little involvement of time non-alignments as compared to the PDASP

architecture.
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Figure 4.4: Mean Square Error (MSE) tracking performance versus training
length for 4× 4 MIMO when fDT = 10−6

It has been observed that at higher doppler rate LC-PDASP converging faster as

compared to PDASP architecture. And convergence performance of LC-PDASP
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architecture is little slow as compared to sequentially operated MIMO RLS algo-

rithm.
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Figure 4.5: Mean Square Error (MSE) tracking performance versus training
length for 4× 4 MIMO when fDT = 10−3



Chapter 5

Conclusions and Future Work

5.1 Conclusion

A new low complexity parallel distributed adaptive signal processing (LC-PDASP)

for a group of computationally-incapable and incapable small platforms has been

proposed. The proposed architecture with the implementation of MIMO RLS al-

gorithm is capable to run computationally-expensive procedures parallely. The

validation of LC- PDASP architecture has been evaluated on the basis of mean

square error, computational complexity and communication delay. Processing time

and computational complexity of LC-PDASP are compared with sequentially op-

erated low complexity MIMO algorithm and PDASP algorithm. The proposed

LC-PDASP architecture using collaborative strategy though required limited in-

teraction with other nodes in the distributed network. It has been seen that the

proposed LC-PDASP architecture provides lesser multiplication complexity than

the conventional PDASP and sequential RLS algorithms. Furthermore, the com-

munication burden provided by the proposed LC-PDASP architecture is much

lesser than the PDASP architecture. Moreover, the mean square error (MSE)

provided by the proposed architecture tends to be the lesser and almost same

as compared to PDASP and sequential RLS algorithms, respectively. Moereover,

the complexity of LC- PDASP architecture is much lesser than the sequentially

41
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operated low complexity MIMO channel estimation algorithm and PDASP algo-

rithm. The percentage improvement of LC-PDASP algorithm is more than of 85%

in reduction of communication burden that significantly impact on overall execu-

tion time of the algorithm as compared to PDASP algorithm and sequential RLS

algorithms.

5.2 Future Work

It has been observed that communication burden ,computational complexity and

mean square error of Low-Communication Parallel Distributed Adaptive Signal

Processing (LC-PDASP) is very good, so the strategy of the future work is divided

into two plans which are as follows:

5.2.1 Plan 1: Hardware Implementation Of The Proposed

Scheme By Using NRL24101 Transceiver

The NRF24101 is a low cost module which is operated on 2.5GHz ISM band. The

maximum data rate provided by this module is 2Mbps. Therefore, the NRF24101

based distributed network provides the access to substantiate the validation of

(LC-PDASP) architecture in terms of individual node computational complexity,

power utilization and memory utilization and over all communication burden that

has to be required for the one complete iteration. Moreover, the attained mea-

sured results are also compared to those which are obtained from the conventional

hardware based PDASP architecture [30].

5.2.2 Plan 2: Validation Of The Proposed Scheme By

Using Network Simulator NS-2

NS-2 is a discrete simulator which is used for the analysis of research work done

in the area of networking [46]. NS-2 simulator offers considerable support for the
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network simulations regarding routing and TCP protocols over wireless and wired

networks. Moreover, the NS-2 provides the complete access about the packet

index number, end to end delay and packet transfer rate. Nevertheless, the NS-2

simulator is not only the best platform for the analysis of LC-PDASP architecture

but can also offer the room to compare the simulations with those of hardware

based results.
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